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1.0 SCOPE

1.1 Identification.

This specification establishes the requirements for
performance, design, test, and qualification of MAPSE program
integration facilities. These include both the set of computer
program modules that perform program integration functions and the
Ada program library, whose structure and contents facilitate their
performance.

1.2 Functional Summary.

The requirements section of this document is divided into four
major sections:

1. a design for an Ada program library that supports access
by both MAPSE tools and user-written APSE programs;

2. a high-level design for the Ada compiler;

3. a design for a program library linker; and

4. a specification of auxiliary functions required to build,
use and maintain the program library.

1/2
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2.0 APPLICABLE DOCUMENTS

Please note that the bracketed numbers preceding the document
identification is used for reference purposes with the text.

2.1 Government Documents
[G-l1 Reference Manual for the Ada Programming Language, proposed

standard document, U.S. Department of Defense, July 1980.

[G-21 Requirements for Ada Pr~gramming Support Environment,
"STONEMAN", February 1980, Department of Defense.

[G-31 Statement of Work for Ada Integrated Evironment, PR No.

B-0-3233, December 1979.

2.2 Non-Government Documents

[N-l An Incremental Programming Environment, Peter H. Feiler and
Raul Medina-Mora, Dept. of Computer Science, Carnegie-Mellon
University, April 1980.

[N-21 Diana Reference Manual, G.Goos and Wm. A. Wulf (editors),
Institut Fuer Informatik II Universitaet Karlsruhe and
Carnegie-Mellon University, 1981.

(I-1] System Specification for Ada Integrated Environment, Type A,
Intermetrics, Inc., March 1981, IR-676.

Computer Program Development Specifications for Ada Integrated
Environment (Type 5):

[1-21 Ada Compiler Phases, IR-677

[1-3] KAPSE/Database, IR-678

[1-4] MAPSE Command Processor, IR-679

[1-5] MAPSE Generation Support, IR-680

[1-6] MAPSE Debugging Facilities, IR-682

[1-71 MAPSE Text Editor, IR-683

[1-8] Technical Report(INTERIM) IR-684
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3.0 REQUIREMENTS

In the MAPSE environment, program integration has two major
objectives: support for separate compilation, and linking the
separately compiled units. In most environments, even those that
support separate compilation, source compilation is considered to be
an isolated step, performed prior to program integration; program
integration is left entirely to a linker program. However, Ada has
been carefully designed to include separate compilation features as
an integral part of the language. Implicit in these language
features is the assumption that substantial integration occurs at
compilation time. The design of the program library, described in
detail below, fully supports both the separation and the integration
inherent in the separate compilation features of Ada.

The MAPSE program integration facilities are based on the
concept that it is the compiler which integrates compilation units
into the library. Having the compilation units already integrated
by the compiler simplifies the design and implementation of the
MAPSE tools, as well as other programs written to access the program
library.

Access to the program library is mediated by the virtual memory
management (VMM) system, a general purpose system described in
[1-5]. The VMM facility allows programs to access efficiently
multi-billion byte databases through a window which can be small
enough to fit in 16 bit minicomputer memory. Thus the MAPSE can be
rehosted to small computer systems with a minimum amount of effort.

The program library makes use of the general database facility
of the KAPSE [1-3]; its structure as a composite object containing
simple objects is a particular instance of a more general KAPSE
facility.

3.1 Program Definition

The major functions of program integration are sourcei -  compilation and linking. Source compilation is the processing of a

text file, containing one or more compilation units, by the Ada
compiler. Linking is the processing of a set of compilation units,
in a program library, by the Linker to produce an executable
representation of those units.

$|
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During both source compilation and linking, other processing
occurs automatically, as needed, to:

1. create and initialize a program library;

2. recompile units that are inconsistent;

3. create and compile implied but missing units.

Although program development can proceed using only the source
compiler and the linker, auxiliary functions relating to the program
library are available to the user. These auxil iary functions allow
the user to control otherwise automatic functions (such as stub or
preamble generation), or provide additional functions not provided
automatically.

3.2 Detailed Functional Requirements

Since the design selected for the program library is the basis
for all MAPSE program integration activities, that design is
presented in some detail below. It should be pointed out that this
design is made possible by the VMM, as described under section
3.2.1.3.

3.2.1 Program Library

The universe within which the integration of Ada compilation
units occurs is the program library. Within this universe arecontained pieces of the "whole program" which is in some stage of

development. The program library is designed so that it can
maintain a set of compilation units in a well-defined state no
matter how complex their interrelationships are or how drastically
they may change.

This well-defined state is independent of changes made outside

its universe. Multiple Ada program libraries within one MAPSE allow
parallel development of unrelated programs without conflict or
unwanted interactions.

The correct design and implementation of the Ada program
library is one of the keys to achieving the goals of the MAPSE. Of
particular importance are choices made in the representation of Ada
programs and especially in the implementation of that representation
in the light of separate compilation. Those choices influence not
only the internal design of the MAPSE/APSE tools, but also shape the
user's view of the system.

3.2.1.1 Program Library Requirements

To satisfy MAPSE requirements, a program library must support:

1. efficient forms of representation of an Ada program during
the process of compilation;

6
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2. permanent retention of and access to those forms that are
needed by other tools; that is, the compiler (when
referencing separately compiled units or when recompiling a
unit automatically); the linker; the debugger; and
yet-to-be-conceived APSE tools;

3. addition (to those permanent forms) of as yet unspecified
information produced by unspecified APSE tools.

Most importantly, the fact of separate compilation should
introduce as few complications and as little overhead as possible to
the fulfillment of these requirements. To achieve the required
simplicity and provide appropriate support for separate compilation,
the program library must be viewed globally rather than locally, as
discussed below.

A local view of the program library might, for example, be one
in which the compiler produces a representation of each compilation
unit that is completely self-contained. This would require the
copying of information from the representation of other compilation
units. An obvious drawback here is the space overhead for many
copies of the representation of an imported type or specification,
one in each referencing unit. With certain styles of
programming-in-the-large, the space and time overhead of copying can
be severe.

More serious is the impact this view has on the design of the
MAPSE tools and the integrity of the program library. A tool that
must look at the representation of more than one unit has to
integrate the separate self-contained worlds. It must keep what has
been defined by each unit, throw out what has been copied, and
insure that the multiple copies are self-consistent. A simple
example is the context specification WITH B,C where both B and C
contain WITH A. Since B and C both contain copies of A the two
versions of A must be sorted out. They might be different, in which
case a choice must be made. This integration must be performed each
time a representation of a set of units is accessed. The
integration exists only during program execution.

A global view, on the other hand, is one in which all of the
units are integrated together. The compiler produces a
representation of a unit that is already integrated with the other
units. Instead of copying information from a previous compilation,
the information is directly referenced (pointed at). In a
completely global view, all traces of the original separation
disappear after a unit is compiled, making it impossible to maintain
multiple revisions or versions of a compilation unit. To fulfill
MAPSE requirements, the global view must be adjusted to provide this~capability.

The MAPSE program library described below is a logically
integrated yet physically distributed world. Each compilation unit
is represented separately in it own space (file), yet is integrated

7
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with the other units. This approach avoids the problems of both the
local and the non-distributed global views. It avoids the overhead,
complexity, and cost associated with copying. At the same time, it
allows multiple versions of units to coexist in the same program
library. The separateness of compilation units remains highly
visible.

Two things are fundamental to the successful implementation of
this view. One is the method of representing the separation; the
other is the method of supporting references across that separation.
Each method is discussed in the following two sections.

3.2.1.2 The View from the KAPSE

This section describes the program library in terms of its
constituent parts of the KAPSE database. The description emphasizes
the separateness of compilation units; the integration aspects are
discussed in the next section. It is important to point out that
the KAPSE facilities used to support the program library are general
purpose; they are not "wired into" the KAPSE design.

This section uses some KAPSE database terminology that may be
unfamiliar to the reader. For more information about these terms,
see the KAPSE Database specification document [I-3]. To aid the
reader, however, the term "distinguishing attribute" refers to a
label whose value helps determine the name of an object. The name
of an object is the set of all of its distinguishing attribute-value
pairs. Objects may also have non-distinguishing attributes; these
are labelled values as well. A set of objects may be partitioned (a
subset selected) by means of the values of either distinguishing or
non-distinguishing attributes. In the sections that follow,
distinguishing attributes are indicated with an asterisk (*).

The program library is a composite object containing objects
distinguished by the attribute PER. The values for the PER

* attribute are:

* *PER=>(SOURCE,COMPILATION,UNIT, LINKLIBRARY)

Thus the program library has five component objects. The
category of each of these components is described in the following
sections.

(a) PER=>SOURCE. This component has a category which may be defined
by the user to contain the source text for the program library. The
design of the program library and the compiler does not dictate the
organization or location of Ada source text. The PER=>SOURCE
component may be absent, may be a simple object, or may be a
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composite object structured as the user sees fit. When the user
submits source text to the compiler, the specified name is
first interpreted relative to the PER=>SOURCE component of the
specified program library. If a text file is not so located, the
specified name is interpreted relative to the current context (as
are all names).

(b) PER=>COMPILATION. This component is a composite object
containing simple objects. One such simple object is created for a
given submission of text to the compiler, no matter how many
compilation units are contained therein. The set of attributes for
these objects are:

*COMPILATION=>submittal number
OPTIONS=>options string

The creator of these objects is the first phase of the
compiler, LEXSYN, which performs lexical and syntactic analysis of
the source text. The object contains the abstract syntax tree with
lexical attributes, a record of lexical and syntactic errors, and a
compressed representation of the source text for the purpose of
generating listings. All of the compilation units submitted
together are represented together. Once created, this combined
representation is used as a read-only input to the remaining phases
of the compiler, which process only one unit at a time. Since it is
not modified, it can be and is reused for unit recompilation. This
saves the overhead of lexical scanning and parsing (especially if
there were multiple compilation units), and guarantees that the unit
is recompiled exactly as it was given in its source compilation.
Thus changes to the unit's original source text or to its PRAGMA
INCLUDE files do not affect the accuracy of unit recompilation. The
object contains no semantic information; its contents are derived
solely from the source text without reference to the rest of the
program library.

This design supports the extension of the MAPSE tool set to
include a syntax-directed editor [N-l] that creates and edits a
program directly in its parse tree form, unparsing the tree during
user interactions to produce a readable form. Such an APSE tool
could easily be built with no change to the program library design,
and only a minor change to the MAPSE compiler. It would create the
PER=>COMPILATION object directly, bypassing the LEXSYN phase of the
compiler.

The OPTIONS attribute records the options specified by the user
when the source was compiled; this is used during unit recompilation
to supply the same options.

(c) PER->UNIT. This component is a composite object containing
simple objects. Each simple object is created to represent
information relating to a single compilation unit, regardless of how
many are submitted

9
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together in one source compilation. They are created for both
source compilation and unit recompilation. The distinguishing
attribute CONTENTS=>(DIANA,LIST) defines the permanent outputs of
the remaining phases of the compiler, semantics through listing
generation.

The complete set of attributes for PER=>UNIT are

UNIT=>identifier
SUBUNIT=>identifier or null
PART=>(SPECIFICATION,BODY)
*CONTENTS=>(DIANA,LIST)
*VMSD=>number
KIND=>(PACKAGE,PROCEDURE,FUNCTION,TASK)
COMPILATION=>number
RECOMPILATION=>number
LINKREFS=>number
VERSION=>string or null
SHARED LIB=>string or null
USAGE->(NEW,USED,OUT OF DATE,MAP)ERRORS=>(NONE,MILD,SEVERE)

The object with CONTENTS=>DIANA contains all of the permanent
forms of representation of semantic analysis and code generation for
a compilation unit, including information of interest to the
debugger. It is an integrated form of all of the traditional
outputs of a compiler: object module, program tree, symbol table,
debugger table. It is created during semantic analysis by
extracting the syntax tree for a single compilation unit from the
PER=>COMPILATION object. Semantics and subsequent phases of the
compiler add additional information to the extracted tree. Once
created, it is not modified as a result of its later use by either
the compiler, linker, or the debugger.

The object with CONTENTS=>LIST contains a printable listing for
the compilation unit. One LIST object is created for each
compilation unit, allowing unit recompilation to also produce a
listing. Although the source representation of a unit does not
change as a result of unit recompilation, the semantic analysis of
the unit may change. As a result of unit recompilation, semantic
errors may appear or disappear, cross reference information may
differ, etc.

The CONTENTS=>LIST object is produced by the last phase of the
compiler, the LISTER. All of the information that the lister needs
to generate a listing has already been permanently saved, so the
compiler may be run with the LIST option turned off. At any later
time the LISTER phase may be run separately to produce a listing.
Thus a project manager may choose to either save compilation unit
listings at compile time, or produce them only as needed.

The value of the UNIT attribute is the identifier of the
library unit as it appears in the source text, but normalized by
capitalization. If the compilation unit is a library unit, the
value of the SUBUNIT attribute is the null string. If the
compilation unit is a subunit, the value of the SUBUNIT attribute is
the identifer of the separate body (again normalized), while the
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value of the UNIT attribute is the same as its ultimately enclosing
library unit. (Intermediate subunit names are not required as
attributes, since the language requires all of the subunits,
sub-subunits, etc. of a given library unit to have distinct
identifiers. Thus SEPARATE A.X.B and SEPARATE A.Y.B is illegal in
Ada because the B sub-subunit identifier is not unique.)

The value of the PART attribute serves to differentiate between
the separate compilation of the specification and body of a package
or subprogram. In the case of a package the PART=>BODY object may
be absent without error. In the case of a subprogram, the PART=>
SPECIFICATION object may be absent without error, in which case the
PART=>BODY object defines the specification as well.

The value of the VMSD attribute is a special number which is
the basis for the integration of compilation units in a program
library. It also serves to distinguish between different versions
and revisions of the same compilation unit. The actual value of the
number is not directly significant to the user. Its significance to
the design of the program library and to the method of access is
discussed in the next section. (The attribute label VMSD is an
acronym for Virual Memory Sub Domain.)

The remaining attributes are explained in section 3.2.2.2 on
compiler processing.

(d) PER=>LINK. The PER=>LINK component is a composite object
containing program context objects. The program context objects are
created by the linker. The complete set of attribute are:

*CALL=>identifier
MAIN=>identifier

The program context object contains the initial memory images
(pure and impure) as built by the linker. It also contains a
machine readable map summarizing the results of the link:
identities of each compilation unit included in the link and the
relative locations of each control section (defined later) in the
executable image. The program context also contains, by convention,
a window to the program library that created it (and in which it is
originally built). This allows the program context to be copied
outside of the program library without losing the connection with
its originating program library.

The value of the MAIN attribute is the identifier of the "main"
compilation unit. The value of the CALL attribute is the name by
which the executable program will be invoked, and defaults to the
MAIN name.

(e) PER->LIBRARY. The PER->LIBRARY component of the program library
is a composite object. Objects in the PER->LIBRARY composite object
relate to the library as a whole. The category of this composite
object is not pre-defined. It may contain objects structured as the
user sees fit. However, its attributes serve to record the status of
the library, as follows:

11
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COMPILATIONS=>Iast submittal number
LAST VMSD=>Iast assigned VMSD number
REVISIONS=>number of revisions to keep

The value of the COMPILATIONS attribute is incremented for each
source compilation. It need never be reset, and is used to generate
the value of the COMPILATION attribute for PER=>COMPILATION objects.
The value of the LAST VMSD attribute is used to generate the VMSD
attribute value for objects with PER=>UNIT, explained in section
3.2.2.2.

The REVISONS attribute helps control the deletion of
OUTOFDATE revisions.

3.2.1.3 The View from the MAPSE

There are many questions regarding the representation of Ada
programs.

What aspects of the program does it represent? How is the
representation defined? How are instances of the representation
created, saved, and later accessed? The previous section discussed
the external database aspects of the representation. What about the
contents of those "simple objects"? What does it look like at the
"bit" level? How does a program "see" it? It is to these questions
that this section is addressed.

There is nothing unusual in the idea of an Ada program that can
access representations of Ada programs, including itself. Any
program that can read a text file can read a simple representation
of itself. The representations in an Ada program library are more
than text representations, however. They have been processed by a
compiler, which transforms the source text of a program into a more
easily manipulated form (lexical and syntactic analysis), analyzes
the program's meaning (semantics), and translates it into a form
which is understood by the target computer hardware (code
generation). All of these processes produce information that is
derived from the original source text representation using
additional knowledge (either built into or accessible to the
compiler) which represent the rules of Ada and the target machine.

(a) The Diana Abstraction. Diana is a form of intermediate
representation for Ada programs that has been suggested for adoption
as a standard. It is intermediate in that it represents only the
information produced by a compiler after the completion of semantic
analysis. (The preliminary Diana document [N-2] suggests an
approach to representing code generation information. This document
is attached as an appendix to the compiler phases B5 specification
[1-2]). In addition to being only an intermediate representation,
Diana is also an abstract representation. Rather than explicitly
describing the

12
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data structures of the representation (as record types, for
example), Diana gives only an abstract type, called TREE. Diana
exists (in one form) as as Ada package specification that defines
the type TREE as PRIVATE, and then defines many procedures and
functions to operate on that type. This is a very useful
abstraction, and allows the compiler to create (and other tools to
access) the Diana representation of an Ada program without depending
on the particular implementation of that representation. Our design
is based on this technique.

However, PRIVATE types must ultimately be defined! Choices
must be made in the implementation of the DIANA representation.
Although the abstraction isolates the parts of the compiler that
manipulate the tree, the design of the compiler as a complete tool,
its portability , and especially the demands it makes on computing
resources, all depend quite heavily on the implementation, not the
abstraction. Furthermore, the abstraction treats lightly or ignores
entirely some very serious issues for a practical MAPSE compiler,
such as address space limitations, efficient permanent retention of
the representation, and separate compilation. The DIANA
implementation must face these issues.

(b) The Diana Implementation. Our implementation of Diana rests upon
the virtual memory management (VMM) system, described in detail in a
separate document [1-5]. This system is a general-purpose facility
that may be used by any Ada program in an APSE, for purposes not
limited to representations of Ada programs. The system has a
definitional facility (using Ada) to define arbitrarily complex
typed data structures. The data structure is defined in terms of
virtual records (analogous to Ada records) that have components of a
user specified type. One type of component is used as a reference
type (analogous to an Ada access type), through which the virtual
records may be joined into trees, lists, and other complex
structures. Note: The word "node" will be used interchangeably
with virtual record. This reflects the fact that the Diana nodes
are implemented in terms of virtual records. However, a Diana node
is a logical construct which may be represented by more than one
virtual record.

The other part of this system is an access facility that:

1. allows a program to create and manipulate instances of the
data structures previously defined;

2. has a built-in capability to permanently retain the data
structures for later use or modification, as desired, in
any of three forms: an efficient binary form (the same one
as created), a human-readable ASCII form, and a compressed
binary form that is machine independent like the ASCII

4form, but very compact;

3. allows the creation of and access to extremely large data
structures which exceed the memory space of the computerl
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4. supports use of the reference (VMM locator) type to data
structures created at separate times and in separate spaces
(files) as easily and efficiently as within the same space.

The permanent external binary representation is typically what
is created and accessed by a program. With this form there is no
need for a "read" phase prior to access of the representation.
Since no transformation of a node occurs on access, the usual "read"
phase, in which every node of a data structure is processed prior to
any access, is totally unnecessary. The savings are enormous for a
program that needs access to only a part of the data structure.

The support of cross-file references is fundamental to the
integration of separate compilation units. The virtual memory
management system defines the concept of a domain, which is a
virtual memory address space. A domain contains one or more
subdomains (virtual memory files). Each compilation unit is
assigned a subdomain number (the value of its VMSD attribute).
Virtual memory locators contain a subdomain number and an offset (in
multi-byte units) within the subdomain (file). Virtual memory
locators can refer to locations within the same subdomain or to
locations in other subdomains of the same domain. The locator is
context (subdomain) indegendent, so it may be copied from one
subdomain (compilation unit) to another without loss of meaning. If
references in a program library did not have this property, complex
translation rules would have to be applied at difficult-to-determine
times. This would complicate not only the compiler, linker, and
debugger, but every APSE tool that must access the program library.

The value of the VMSD attribute is not of direct significance
to the user. It defines the unit's integration slot in the program
library. It also allows multiple revisions or versions of a
compilation unit to coexist, because they have different VMSD
values. No two PER=>UNIT objects in a program library have the same
VMSD number (except the matched pair of CONTENTS->DIANA and
CONTENTS=>LIST). The number is limited to a maximum per domain
(suggested limit-4K, but a larger limit can be designed) and hence
limits the number of distinct units and revisions of units in a
single program library. When the LAST VMSD number of a program
library reaches its limit, it is reset so that new VMSD numbers can
be assigned from the "holes" left by deleted objects.

It is desirable (but not necessary) to contain a virtual memory
locator in 32 bits. Allocating 12 bits to a subdomain number and 20
bits to a subdomain offset (in 16 byte units) yields the following
limits for a program library:

4096 compilation units (including multiple versions and

revisions)

16,777,216 bytes per compilation unit

A different allocation of a 32 bit virtual memory locator
yields a greater number of smaller units, or a lesser number of
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bigger units. Allocating 64 bits increases the limits for both the
number and size of compilation units to unimaginably large values.

The PER=>COMPILATION object produced by the LEXSYN phase of the
compiler requires representation of only lexical and syntactic
attributes. Therefore, the nodes used in the abstract tree may be
smaller versions than those in the PER->UNIT,CONTENTS->DIANA object.
The normalizations or transformations of the Diana tree required by
semantic analysis have not been performed in the abstract tree.

(c) Global Cross References. The representation of global cross
references presents an interesting problem. The use of a global
symbol (defined in a different compilation unit)'represents no
problem, because cross-unit references are directly supported by the
VMM system. The identity of the global symbol is the VMM locator to
its definition. However, it is desirable to record all references
to a symbol as a list of cross reference entries attached to the
symbol definition. This cannot be done for global references
without modifying the file containing the definition; such
modification has been ruled out, because it is desirable to keep the
results of a compilation unmodified by its use. (The indication of
its use is recorded in the USAGE attribute, but this is a
modification of the attribute, not its contents.)

The solution is to create a global reference VMM locator
association set in each unit, with one set element for each global
symbol referenced in the unit. The locator associations in this set
have key values that are the VMM locators for global symbol
definitions and associated values that are locators for the lists of
references. A program to gather, process, or search through all
references to global symbols can be easily designed and will perform
efficiently.

3.2.1.4 Summary of Program Library Attributes

Note: distinguishing attributes are marked with an asterisk
h (*).

*PER=>LIBRARY --for each program library
COMPILATIONS=>number --number of compilations into this

library
LASTVMSD->number --last assigned value of VMSD

attribute
REVISIONS->number --number of revisions of a unit

to keep

*PER->COMPILATION --for each source submittal
*COMPILATION->number --value of PER->LIBRARY COMPILATIONS->
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OPTIONS->string --options used at submittal

*PER->UNIT --for each compilation unit
UNIT->identifier --Ada name
SUBUNIT=>identifierlnull --subunit Ada name or nullPART->( SPECIFICATION,BODY)

--differentiates the 2 parts of units
*CONTENTS->(DIANA,LIST) --distinguishes the 2 permanent

outputs
*VMSD->number --virtual memory sub domain
KIND->(PACKAGE,PROCEDURE,FUNCTION,TASK)

--kind of compilation unit
COMPILATION->number --identifies the source submittal
RECOMPILATION->number --number of times recompiled
LINKREFS->number --records usage as linked unit
VERSION->string or null --optional name of version
SHARED LIB->string or null

--if not null, name of library containing

--the actual contents; object in this
--library actually is empty

USAGE->(NEW,USED,OUTOFDATE,MAP)
--status of usage

ERRORS=> ( NONE,MILD,SEVERE)
--record of compilation errors

*PER->LINK --for each link
*CALL->string --name used to call program
MAIN=>identifier --name of main program unit

3.2.2 Ada Compiler

The compiler is described in this document down to the phase
level only. The detailed description of each of its phases appears
in a separate document (1-21.

3.2.2.1 Inputs

The user's request to compile Ada source is represented as:

COMPILE [SOURCE->textfile][LIB->prog_lib][options]-->summary

The text file containing the source is identified by the
optional SOURCE-> parameter. If the SOURCE-> parameter is not
specified, the source is read from the standard input file.

The specification of the source text is intentionally
unrestricted. As a consequence, management of Ada source text is
not inextricably built into an Ada program library. The level of
source text control is the choice of the user or project manager.
The source history system may be used, as described in the KAPSE B5
specification document [1-3]. This may be used for non-Ada text
(e.g. documents) as well as for Ada source; inventing an Ada source
management system as an inseparable part of the program
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library is unnecessary. By reading from STANDARDINPUT, the source
compiler simplifies its connection to other tools, allowing
pipelines into the compiler, syntax checking from the editor, etc.

The program library that is to contain the results of the
compilation is specified as a string (here Oprog libN). The string
may name a pre-existing program library, or it may name a new one to
be created. If the program library is not specified at all, the
COMPILE request is interpreted as a request for a syntax check with
no semantic processing and no permanent output. (An MCL script
which provides a compile, link, and go capability can identify a
program library as a temporary object.) In any case, the summary is
written to the default output file (STANDARD OUTPUT). The summary
reports what units wrr compiled and listi any errors may have
occurred. (Errors aje, '.n the listings as well.)

Options may be 4T r iied with the COMPILE request. If the user
desires to retain :i. y -.e versions of a compilation unit, the
VERSION option is ud . assign an arbitrary string to identify the
compilation unift(.' k:,ucd. The USE VERSIONS option may be used
to select one )I sieral possible versions of a referenced unit.
Re.ferenced units are:

1) the sptecification corresponding to the body being
compiled;

2) the enclosing unit(s) of a subunit;
3) the specifications of units named in WITH statements;

4) the bodies of referenced specifications which are INLINE
or GENERIC.

The USE VERSIONS may specify a list of version identifications.
The version- (unit) selection algorithm is described in section
(3.2.2.2).

The DEBUG option affects the generation of code to support the
debugger's control of program execution at the statement level. The
possible values are DEBUG->ON (the default) and DEBUG->OFF. If the
debugger encounters a compilation unit compiled with DEBUG->OFF,
breakpoints may not be set at arbitrary statements, only at higher
level constructs such as subprogram invocation, tasking
interactions, exceptions, etc.

The OPTIMIZE option affects the level of optimization with
respect to debugging capabilities. (The OPTIMIZE PRAGMA tells the
compiler what to optimize -time or space.) Since sophisticated
optimization can affect the validity of debug time interactions, the
user can control the effect optimization has on debugging as
follows:
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OPTIMIZE=>CAN MODIFY -- The compiler must not move a fetch of
-- variable past a statement boundary;
-- the user can modify the value of a variable
-- at a breakpoint and expect the modified
-- value to be used in subsequent execution.

OPTIMIZE=>CAN INSPECT -- The compiler must not move a store
-- into a variable past a statement boundary;
-- the user can display the value of a
-- variable at a breakpoint and expect to see
-- the value as used in subsequent execution.

OPTIMIZE=>ON -- All optimizations enabled; the user
-- may inspect or modify variables, but the
-- results may be misleading; meaningful
-- debugging is possible by consulting the
-- generated code listing.

OPTIMIZE=>OFF -- No optimization. (No additional debug

-- capabilities compared with CANMODIFY.)

The options controlling the generation of a listing are:

LIST=>OFF -- No listing is produced; a listing may
-- be requested at a later time.

LIST=->ON -- A full listing is produced with all
-- sections present (the default).

LIST->(SOURCE,INCLUDE,XREF,ATTRS,ASM,STATS,ENV)

-- One or more of these options may be specified
-- Each controls the section of listing as
-- described in the LISTER section of the

compiler phases document [1-21.

The following option applies to a compilation containing more
than one compilation unit.

REORDER->(YES,NO)

If REORDER->YES is specified (the default), the compilation units
may be presented in any order. After processing by LEXSYN, the
compilation units are reordered, if necessary, to obey the Ada
language rules on order of compilation (G-l, 10.3). The reordering
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eliminates the burden, otherwise placed on the user, of knowing the
correct order of compilation units. If REORDER=>NO, the units are
compiled in the order given.

3.2.2.2 Processing

The compiler performs most of its processing in twelve phases.
These phases are described in detail in a separate document [1-2].
This section describes the processing done outside these phases:
the preparation of the program library, the sequencing of the
phases, and the preparation of input to and output from each phase.
For the purpose of this section, the phases of the compiler fall
into two categories:

1) LEXSYN, which performs lexical and syntactic analysis of a
compilation (which may contain more than one compilation
unit);

2) the remaining phases, which process a single compilation
unit (SEM,GENINST,STATINFO,STORAGE,EXPAND,FLOW,VCODE,TNBIND,
CODEGEN, FINAL, LISTER ).

For a given invocation of the compiler, the LEXSYN phase is
invoked only once. The remaining phases (as a group) are invoked
once for each compilation unit.

The processing by the compiler may be summarized as follows:

1. Options processing

2. Program library processing

3. Source processing

4. Unit processing

Options processing starts by using a KAPSE call to get the
parameters specified by the user. This is returned as a single
string that is saved as the OPTIONS attribute of the
PER=>COMPILATION object (see below). The LIB and SOURCE values are
extracted from the string at this time.

Program library processing starts by creating a program library
if the specified library does not yet exist. This is done by
invoking the program library generation tool, described in section
3.2.4. The COMPILATIONS attribute of the PER->LIBRARY object is
modified by increasing its value by one. A VMM subdomain file is
created in the PER->COMPILATION object to hold the results of source
processing (the abstract syntax tree). It is given the appropriate
attribute values. The attribute COMPILATION is given a value
corresponding to the current value of the COMPILATIONS attribute of
the PER->LIBRARY object. The OPTIONS attribute is given the value
as saved from options processing. If a program library is not
specified (syntax checking only), this object is merely a temporary
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object in the invoker's program context. Note: the subdomain
number is always zero, since the PER->COMPILATION objects do not
participate in the PER=>UNIT integration.

Source processing is performed by the LEXSYN phase. The
default input file is assigned, if necessary, using the SET INPUT
procedure of TEXT 10. If a name is specified via the SOURCE7>name
parameter, an attempt is made to OPEN a file of the name
proglib.SOURCE.name". If this fails, the file "name" is opened.
The LEXSYN phase is invoked, passing it the PER=>COMPILATION (or
temporary) object to contain its output. (In the case of syntax
checking, the compiler's final action is to pass the temporary
object produced by LEXSYN to the LISTER. All semantic and code
generation phases are bypassed. The LISTER's output in this case
consists only of lexical and syntactic errors.)

Unit processing starts by inspecting the output of LEXSYN, in
the PER=>COMPILATION object. The compilation units are first
reordered if REORDER->YES. The processing as described below is
repeated in a loop for each compilation unit which LEXSYN created.
The parts of unit processing are:

1. referenced unit processing, which selects a particular
version/revision of a unit;

2. phase processing, which invokes the remaining phases of the
compiler;

3. attribute processing, which modifies attributes of PER->
UNIT objects.

The highest part of the abstract syntax tree for the
compilation unit is inspected to determine both the context
specification (WITH statements) and the kind of unit (library unit
specification, library unit body, or subunit). This analysis
produces the referenced unit list consisting of Ada unit and subunit
identifiers. The unit selection algorithm is applied to each member
of this list to determine the values of the VMSD attribute of the
(PER->UNIT,CONTENTS->DIANA) objects to be used as the referenced
units. As explained in the special requirements section below, this
algorithm insures selection of consistent units by performing unit
recompilation if necessary. Thus referenced units may be recompiled
prior to their use by the original unit being compiled. This is a
recursive process, since the referenced units themselves may refer
to units that require recompilation, and so on. The recursion does
not occur inside any of the compiler phases, however, but rather in
the unit processing section of the compiler. Once the remaining
phases of the compiler are invoked for a given unit, they have a
consistent set of referenced units already available, so that
recursion within the phases is unnecessary.

After the selection algorithm has produced a referenced unit
list in terms of the VMSD attribute of CONTENTS->DIANA objects, a
new CONTENTS->DIANA object is created to contain the results of the
given unit compilation. The VMSD attribute of the new object is
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assigned by incrementing the value of the LAST VMSD attribute of the
PER=>LIBRARY composite object. If the number obtained is in use
because a PER=>UNIT object with that VMSD attribute value already
exists, the LAST VMSD number is incremented until an available
number is found. -On reaching its limit, the number is reset to 1.
This new object is initialized with the list of (read-only)
referenced objects, the identity of the PER=>COMPILATION object
(also read-only), and the identity of the compilation unit within
that object which is to be processed. (The list of referenced
objects may be used by any program which later wishes to access the
DIANA file of a given compilation unit.) The new CONTENTS=>DIANA
object is then passed to the remaining phases of the compiler.

All of the remaining phases (except the LISTER) are always
invoked, whether or not they must perform any actions. The phase
itself decides what processing must be performed. The LISTER is
called conditionally on the listing option. It writes to the
default output file, which is directed (via TEXT IO.SET OUTPUT) to
the appropriate PER=UNIT, CONTENTS=>LIST object. The LISTER may be
called independently of the COMPILER, in which case its output may
be directed anywhere.

After phase processing for a unit is complete, the attribute
processing part of unit processing occurs. This sets the USAGE
attribute of each referenced unit to USAGE=>USED. This indicates
that references into those units may exist. The USAGE attribute of
all other revisions of the same version of the just compiled unit is
set to OUT OF DATE. This indicates that any references to the
previous defTnilion should be updated. If the USAGE attribute of a
revision (which is about to be set to OUT OF DATE) is UNUSED, the
revision is deleted instead. The OUT OF DATE value of the USAGE
attribute may be used to control dele~ioi of units by the user.
Automatic deletion of OUT OF DATE units may be requested by the user
via the REVISIONS attribute of the PER=>LIBRARY object; this causes
deletion of the oldest revision when the number of revisions exceeds
the specified limit. Normally, automatic deletion is not performed
to allow a comparison to be made between revisions (see special
requirements below), and to allow analysis of the units which still
refer to the OUT OF DATE revision.

3.2.2.3 Outputs

The outputs of the compiler are the compilation summary written
to the default output file, and the program library. The effect on
the program library in a logical sense consists of defining or

1redefining the compilation units supplied in the source text and
redefining the automatically recompiled units. The effect in a

ophysical sense is the creation of new files. These files are
described in section 3.2.1.2. The operations performed on these

files by each phase is described in the compiler phases B5
specification document [1-2].
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3.2.2.4 Special Requirements:

The source processed by the compiler may redefine a compilation
unit which had been previously compiled and then referenced by
another compilation unit (via the WITH statement, for example). The
redefinition implies that all referencing units must be recompiled
to be affected by the change. Until the affected units are
recompiled, there exists an inconsistency in the program library.
However, it is an unwelcome burden on the user to require the
resubmission of the source of an unchanged compilation unit merely
because a unit which it references has been altered. The method by
which the compiler and linker lift this burden from the user is
detailed in the following paragraphs. (For an example, see Section
6.)

(a) Unit Recomilation. A program library can be well-defined and
yet beinconsistent, as long as the inconsistency is properly
represented. For example, a specification might be changed without
recompiling units that depended on the original. The units
requiring recompilation are inconsistent until they are recompiled
using the changed specification. The term "unit recompilation"
refers to recompilation of a defined unit (usually to make it
consistent) by effectively using the same source text as was
submitted in a source compilation, but without requiring the user to
actually resubmit a source text file. This is possible because the
PER=>COMPILATION object, which has saved the output of the first
phase of the compiler, may be used to recompile any of the units
therein. Recompilation therefore bypasses the lexical and syntactic
analysis performed by LEXSYN. A single unit will undergo unit
recompilation separately even though it was submitted together with
other units in a source compilation. Unit recompilation may be
requested explicitly by the user with the RECOMPILE program,
although it is rarely necessary to do so. Unit recompilation will
occur automatically according to the following two principles:

1) (Ease of use): The user never has to remember what or when
to recompile. The system will always recompile whatever and
whenever necessary.

2) (Efficiency): Automatic unit recompilation is delayed until
use of an inconsistent unit would otherwise result.

Both the source compiler and the linker will perform automatic
unit recompilation according to the above principles. These
principles avoid wasted recompilations and allow the user to
interact in various ways with the program library prior to the
"domino effect"*; that is, the widespread recompilations made
necessary by a change to a low level specification. The change must
be propagated by recompiling all affected units (those which

*A single line of dominoes is an unlikely analogy. To be more
accurate, the domino analogy is likely to include both branching
and merging. Still, the image of every domino (compilation unit)
getting knocked over (recompiled) by a push on (change of) a single
one is somehow psychologically apt.
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reference the specification), and then those which reference the
recompiled units, and so on. By the second principle the unit
recompilations do not occur when the low level specification is
changed. Instead, they occur when the referencing unit is used (as
a referenced unit itself or by the linker).

An obvious example of the savings in recompilations is when the
user is about to submit a different source version of an affected
unit; prior unit recompilation would be a waste of time. A less
obvious interaction with an even greater savings is the use of the
MAP program. This program allows the user to assert that two
versions/revisions of a compiled unit are identical. The program
checks the assertion and if true, maps the old to the new. The
mapping allows units compiled using the old version to be consistent

*with the new without recompilation, thus stopping the domino effect.
The VMM system supports this mapping by translating automatically
all of the old VMM locators to new VMM locators.

(b) Unit Selection. Unit recompilation occurs in the compiler during
the unit processing described above. A key part of this processing
is the unit selection algorithm. Given a unit (subunit) identifier
and an optional USE VERSIONS list of version strings, this algorithm
selects a particular compiled unit, identified by the value of its
VMSD attribute. In the simple case, where the user has not
specified the VERSION option for any compilations and therefore has
not requested use of a particular version with the USE VERSIONS
option, there is only one version for each unit, with the VERSION
attribute a null string. Multiple revisions of this (null) version
still will occur by source compilation or unit recompilation. The
unit selection algorithm picks the most recent revision which has
been successfully compiled (ERRORS=>NONE). Most recent is defined
by the highest value of the COMPILATION attribute. (This avoids
problems due to operator error in setting the date.' If u..,-
recompilation has occurred, multiple revisons may exist with the
same COMPILATION value; in this case the one with tne highest
RECOMPILATION number is chosen. (As a result of the attribute
processing described in a previous section, only the most recent
revision has a USAGE attribute whose value is not OUT OF DATE.
However, the VERSION attribute of a unit may be changed arsitrarily
by the user, so this cannot be relied upon.)

Before the candidate unit is made the final choice of the unit
selection algorithm, it is tested to see if it requires
recompilation. Recompilation of unit A is required if the results
of the unit selection algorithm (recursion here) on A's referenced
units yields at least one unit that is a different revision than
that used when A was compiled. If so, it is recompiled, and the
results become the final choice of the (outer) unit selection
processing.

By specifying a VERSION option on the COMPILE request, the user
indicates that the unit has an additional identity besides its Ada
name. The VERSION identity of a unit affects the unit selection
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algorithm by means of the USE VERSIONS option of the COMPILE or LINK
requests. This identity may-be used at link time to select between
alternate bodies for a given specification, or may be used at compile
time to select one of several versions to be used as a referenced
unit. Recompiling a version produces a revision of that version only,
not of other versions. Thus other versions are not marked OUT OF DATE
or deleted. (The version identity of a unit is not altere3 by
recompilation; however version identities selected for its referenced
versions may be different on recompilation.)

The value of the VERSION identification string is arbitrary; it
may be changed by the user at any time. Its significance is up to the
user, but it affects the actions of the compiler and linker. It may
be used to identify a partition in the program library to select units
for deletion. A trial compilation may be entered with VERSION=>TEST,
for example. The TEST version may be linked in or used as a
referenced unit, then later either deleted or reassigned a different
version. The simplest use of VERSION is to distinguish between the
multiple bodies of a single specification. If the body has no
subunits (and is not INLINE or GENERIC), no dependencies on the
VERSION occur during compilation; only at link time must a choice be
made. This simple use of VERSION will not cause automatic unit
recompilation at the time of a COMPILE request. However, if the
USE VERSIONS option causes a choice to be made at compile time, then a
cha7nge to the option may cause automatic recompilation.

The list of version identities in the USE VERSIONS list has the
following effect on the unit selection algorithm. The existing
versions of a unit are checked for a match in the list; the list is
ordered in decreasing priority, so the earliest match is selected. If
no match is found, the null version is chosen if there is one; if no
null version exists, the most recent version is chosen. Thus the null
version acts like a "default" version.

3.2.3 Linker

The term "linking" refers to the processing performed by the
linker on a program library to produce an executable program context.
This is represented by:

LINK LIB=>prog lib [MAIN->unit name] [options] --> link summary

The naming of a program library is required; the name of a "main
program" unit is optional. A short summary of the link is produced on
STANDARD OUTPUT. During the processing of a link request, the linker
may perform the following functions automatically:

unit recompilation, if necessary;

stub generation to supply missing bodies for library units or~subunits;

preamble generation, if the "main program" has Ada formal
parameters.
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3.2.3.1 Inputs

(a) Program Library. The program library is specified to the linker
with the LIB-> parameter. This library contains one or more
compilation units which are to be included in the executable result.

(b) Main unit. The compilation unit which is to be the "main program"
is specified with the MAIN=> parameter. This parameter is optional;
if it is not specified, a main unit is computed (as described in the
processing section below) if there is only one reasonable candidate.

(c) Options. The following options may be specified:

USEVERSIONS=>list of version identities

The list is used to select between multiple versions of units, as
described in the processing section below.

CALL=>name

This is the name to be used to invoke the program context. If not
supplied, it defaults to the main unit name.

(d) Linkable Diana . The compilation units in the program library
(PER=>UNIT,CONTENTS=>DIANA) contain the Diana representation, with
additional information supplied by the code generator. With
traditional compilers the compiled machine code and data are written
to an object module or "rel" file, separately from any intermediate
representation (such as a symbol table). In linkable Diana, the
machine instructions and data are integrated with the intermediate
representation (the Diana tree). There are a number of advantages to
this design. Since the CONTENTS=>DIANA objects are themselves
integrated by the compiler, so are the machine instructions and data,
thus eliminating some of the work traditionally done by a linker.
Also, since the symbolic information and the machine code are in the
same file, they are always consistent.

This section describes the representation of the information that
traditionally appears in an object module. Each construct is
implemented in terms of VMM virtual records, called nodes, as
described in the following sections.

The construct of primary concern both to the code generator and
the linker is the control section (CSECT). A CSECT is a block of
storage units that are to be allocated contiguous space in memory by
the linker. The code generator defines the size and function of each
CSECT, and also defines any or all of the storage units within. The
storage unit is as defined in package STANDARD.SYSTEM for the target
machine. For example, on both the 370 and 8/32 target machines,
STORAGE UNIT:-8, which defines the storage unit as 8 bits. The term
"SU" wiTl be used in the following sections to mean:
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Type SU is O..2**STORAGEUNIT-i; --defines a byte for 370, 8/32

For SU'SIZE use STORAGE UNIT; --length specification

The node defining a CSECT has the following components:

1. a list of ENTRY nodes;

2. a list of compiler SU definition (CSUD) nodes;

3. a list of linker SU definition (LSUD) nodes;

4. the CSECT's function (spec elaboration, body elaboration, body
call, etc.);

5. the size of the CSECT (in SUs);

6. an alignment (in SUs)-the linker will place the CSECT at an
address divisible by this number;

7. a pure vs. impure indicator (pure CSECTs are subject to memory
protection and sharing at load time);

8. a VMM locator for the defining Diana construct.

An ENTRY node is used to define a location within a CSECT. It
is used in a situation where reference to a Diana construct may occur
from another compilation unit, but the reference is to a location
other than the beginning of the CSECT. The referencing unit does not
know the displacement within the CSECT, so the ENTRY node serves as a
place holder. It is attached to the Diana construct represented by
the ENTRY node. An ENTRY node has the following components:

1. the VMM locator of the CSECT node to which it is attached;

2. the displacement (in SUs) within the CSECT;

3. a function (same meaning as the function component of a CSECT);

4. a VMM locator for the defining Diana construct.

It should be noted that the CSECT and ENTRY nodes do not have names as
do the equivalent constructs in a traditional object module. In such
object modules, the names are bound by a linker (frequently known as a
"binder"). Name binding would be superfluous in the MAPSE linker,
because the binding has been performed by the compiler (in the
semantic analysis phase) and preserved in the program library.

A CSUD (compiler SU definition) node is used to define the
compile-time values of a contiguous array of storage units within the
CSECT to which it is attached. (This corresponds to the .TXT record
of a 370 object module.) It has the following components:
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1. a displacement (in SUs) within the CSECT;

2. an array of SUs containing the machine code and/or data.

The compiler may define the storage units of a CSECT with one or
more CSUD nodes. Some or all of the storage units of a CSECT may be
left undefined.

An LSUD (linker SU definition) node is used to define the
link-time values of storage units in the CSECT to which it is
attached. (This corresponds to the .RLD record of a 370 object
module, which defines relocation data.) The value is specified with
an arbitrary expression containing a limited set of operators and
operands as described below. An LSUD node contains the following
components:

1. a displacement (in SUs) within the CSECT of the link time
value;

2. a size (in SUs) of the link time value (right adjusted in the
field);

3. a locator of a link-time expression node defining how the
linker is to compute the value.

The link time value is typically 1 to 4 storage units in size, and
typically contains an address. However, the linker will also assign
values representing Ada exception identities, stack frame sizes, and
other entities which the compiler cannot reasonably compute (due to
separate compilation).

The link-time expression nodes, LOPR, LADR, LLIT, LATT, are used
to represent the computation of a link-time value. The value is
referenced by an LSUD node. A value of arbitrary complexity may be
represented by a tree structure with LOPR branch nodes and LADR, LLIT,
and LATT leaf nodes. A simple value may be represented with a single
leaf node. Thus complex address constants or other link-time values
may be defined by the compiler and computed by the linker.

An LOPR node represents an operation. It has the following
components:

1. a binary operator (plus,minus,times,divide);

2. a VMM locator for the left operand;

3. a VMM locator for the right operand.

An LADR node represents the address of an entity. It has the
following components:
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1. a function (used to select from a set of CSECT or ENTRY nodes);

2. a VMM locator of a node (Diana construct, CSECT, or ENTRY
node.)

The function component is needed only when the locator refers to a
Diana node with multiple CSECT (or ENTRY) nodes. With separate
compilation of bodies, the CSECT representing a procedure may not
exist when a call to the procedure is compiled. The compiler creates
a LADR node referring to the Diana construct for the specification.
The linker can find the Diana construct for the corresponding body,
and select the correct CSECT from the set of attached CSECTs hy
comparing the function components. If the body and the call are in
the same compilation unit, the compiler may point the LADR node
directly at the desired CSECT.

An LLIT node represents a literal. It has the following
component:

1. a literal value of an implementation-defined integer type.

An LATT node represents an "attribute* (The word "attribute" is
quoted here to distinguish its use as a Diana term, rather than a
database term.) It has the following components.

1. an "attribute" selector (frame size, exception identity, etc.);

2. the locator of the node whose "attribute" is being referenced
(typically a Diana construct).

An interesting example of the power of link-time expressions is the
compiler's creation of a byte pointer for special byte instructions on
a 16-bit word-addressed machine. The word address containing the byte
is represented by a LADR node; a LOPR node (times) points to the LADR
node and to a LLIT node (value 2), instructing the linker to double
the word address; another LOPR node (plus) points to the LOPR (times)
node and to a LLIT node (value 0 or I for the left or right byte as
appropriate. A traditional linker with only limited operations on
addresses (usually addition of a signed constant) could not create
such a byte pointer.

The nodes described above are contained in the CONTENTS->DIANA
object produced by the compiler. These nodes are referenced by Diana
construct nodes as code generator "attributes". In addition, the root
node for each object contains a list of all CSECT nodes, a list of all
LADR nodes (for unreferenced CSECT elimination), and a list of all Ada
exception definitions. This enables the linker to quickly locate the
nodes that are significant to its processing, without a complete walk
of the Diana tree.

(e) Run Time Library. The Ada compiler generates code that calls run
time routines for certain language constructs (allocators, tasking,
exception raising, etc). These routines must be available to the
linker, and there must be a convention for the compiler to use for the
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run time routine CSECT references. It is desirable to code as much of
these routines in Ada as possible, yet not allow direct reference to
them by Ada source code. (For example, if an allocator "NEW t" were
translated by the code generator into a call on a function
"alloc storage(t'size)" defined in the run time library, the Ada
specifTication must be defined in such a way as to prevent a programmer
from calling "allocstorage" directly.)

This problem is resolved by placing the specifications of the run
time library in the private part of a predefined package specification
(for example package STANDARD.SYSTEM). Thus only the compiler itself
will have visibility to the run time routines. This solution adds no
additional complexity to the linker, since the reference mechanisms
are the same as to user-compiled Ada programs.

3.2.3.2 Processing

Linker processing occurs in the following stages:

1. unit recompilation;

2. preamble and missing body generation;

3. special CSECT creation;

4. unreferenced CSECT elimination;

5. exception identity assignment; I
6. CSECT placement;

7. memory image creation. All

(a) Unit recompilation. This phase is similar to the unit
recompilation processing in the compiler. A referenced unit list is
constructed using the unit selection algorithm described in the
compiler processing section. It differs in two ways. The process
starts with a single compiled unit, rather than with source. The main
unit as specified (or computed) is conditionally recompiled, resulting
in a consistent set of referenced units. Unit recompilation proceeds
as in the compiler. However, with the compiler's unit recompilation
algorithm, only library unit specifications would be recompiled. The

L, bodies corresponding to those specifications, and the subunits of
those bodies, would not have been recompiled, since the references
from the specification to the bodies are only implied (barring INLINE
and GENERIC). Thus the linker's unit recompilation algorithm, unlike
that of the compiler, selects the corresponding bodies and subunits,
applying the same version selection algorithm. (Any units subject to
recompilation which are identified with VERSION->"*TEMPORARY" are not
recompiled, so the preamble and body generation described in the next
stage will occur for each link.) The linker program performs the unit
recompilation by invoking the RECOMPILE program via the KAPSE program
invocation interface. The parameters which the linker supplies to
RECOMPILE are described in Section 3.2.4.1.
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The main unit, from which the unit recompilation process starts,
does not have to be the ultimate main unit. It may in fact be any
library unit; the resulting link serves as a unit test link. This
allows testing of individual compilation units without involving any
of the higher level units. If the MAIN-> parameter is omitted, the
linker will attempt to compute a main unit by the following method,
which is based on the fact that the main unit will not be referenced
by other units. The partition PER=>UNIT,USAGE=>NEW is opened; if
there are multiple units in this partition, any units which have
revisions or versions with USAGE->(not NEW) are ignored. If there is
only one unit left, it is chosen as the main unit. (Alternative main
units may exist in a program library, in which case the desired main
unit must be specified to the linker.) This frees the programmer from
having to specify a main unit when there is only one reasonable
candidate.

The main unit must be a library unit, either a package or a
subprogram. If the subprogram has parameters, a preamble will be
built during the next stage of processing.

(b) Preamble and Missing Body Generation. This stage involves the
automatic construction of compilation units that have not been
supplied by the programmer. If the main unit, as specified by the
user or computed by the linker, is a function or a procedure with
parameters, a preamble is built. The preamble generator is invoked,
which analyzes the Diana for the main subprogram and generates source
code for the preamble. The preamble is compiled using the source
compiler, creating a unit which now acts as the main unit. (When the
preamble executes, it converts the string values of parameters from
the KAPSE, to Lhe internal representations used in the parameters of
the subprogtam, and then invokes the subprogram.)

As a result of the unit processing stage, a list of missing bodies
has been constructed, containing an entry corresponding to each
specification for which a body has not been supplied by the user. The
body generator (described in a later section) is invoked with this
list of units. Like the preamble generator, it produces source text.
This text is compiled using the source compiler, producing null
executable bodies.

(c) Special CSECT Creation. The set of library units selected in the
previous stages must be elaborated in the correct order when the
program is executed. The elaboration order is computed using the
dependency relations of library units. The order is recorded in an
elaboration CSECT. This CSECT is a table of CSECT or ENTRY addresses,
where each address refers to the elaboration function as created by
the compiler for each library unit. The last address is of the main
unit. The Ada runtime library contains a startup routine which uses
the elaboration CSECT to sequence the library unit elaborations. The
address of the startup routine is made the initial program counter or
PSW for the Ada program context.
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In addition to the elaboration CSECT, the linker creates a map
CSECT which allows the run time system's debugging support routines to
locate the statement hook tables of each compilation unit.

(d) Unreferenced CSECT Elimination. The use of packages and generics
in Ada is likely to result in unreferenced subprograms. Since the
compiler generates a CSECT for each subprogram body, an unreferenced
subprogram results in an unreferenced CSECT. This processing stage
identifies which CSECTs are not referenced by any LADR nodes and
excludes them from placement in memory. Although this requires a pass
over the LADR nodes prior to CSECT placement, it is worth the
additional processing time to reduce the memory requirements of the
final program.

(e) Exception Identity Assignment. Each exception defined in a linked
unit is assigned a unique integer value to represent its identity in
RAISE statements and exception handlers. A unique value is required
so that the run time system's raise handler can locate the correct
handler for an exception. A complicated scheme in the compiler to
assign unique identities (across compilation units) is avoided,
because the linker can simply assign consecutive integers to the set
of all exceptions in the linked program.

(f) CSECT Placement. This processing stage assigns relative locations
to all of the CSECTs not excluded by the previous stage. Pure and
impure CSECTs are grouped in two separate segments. Each CSECT in
turn is placed following the previous CSECT in the appropriate
segment, with the alignment as specified in the CSECT node.

(g) Memory Image Creation. This processing stage allocates pure and
impure memory image arrays (VMM variable length arrays) and defines
the contents using the CSUD nodes of each CSECT. A storage unit
"fill" value is defined for storage units not specified in CSUD nodes
or skipped because of CSECT alignment. After all the CSUD nodes for a
CSECT have been processed, the LSUD nodes are used to assign the link
time values.

As a result of exception identity assignment and CSECT placement,
all components of link-time expression nodes have associated values.
Each LSUD node causes a link-time computation to be performed and a
value stored into the pure or impure memory image at the location
defined in the LSUD node.

3.2.3.3 Outputs.

There are two outputs from the linker; an executable program context,
and a short link summary written to standard output. The program
context is a composite object that is initialized by the linker to
contain:

1. the pure and impure memory images;

2. a map object recording the selection and placement choices made
by the linker;

31

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MAEACHUSETTS 02138 (617) 01-1840

W.W..



3. a window on the program library which provides the debugger or
any other program context analyzer with access to the program
library which generated the program context.

The map object is a VMM file containing a mapping set for each ofthe following:

1. each linked compilation unit;

2. each placed CSECT;

3. each assigned exception.

The mapping sets are comprised of nodes whose membership testing
criterion is the VMM locator of the corresponding linkable Diana
construct, and with a component which defines the value assigned or
selected by the linker. Given a program context, a program (for
example the debugger) can use the map object to quickly find the value
(unit version, CSECT address, exception number) selected or assigned
by the linker.

3.2.3.4 Adaptation

(a) Placement Control. Linker commands to control placement of CSECTs
in memory may be required for some target machines (other than the 370
and 8/32) which have non-uniform memory spaces. The non-uniformity
may be due to differences in the addressing techniques, power
consumption, speed, etc, and so may require user control over the
otherwise automatic placement of CSECTs.

The linker commands would be read by the linker from its standard
input, and consist of simple free-form syntax: command verbs followed
by operands. Commands controlling placement fall into two categories:

1. segment definition commands which define areas of memory and
the usage for the linker (pure, impure, reserved, etc.)L

2. placement commands which direct the placement of CSECTs, either
individually or by groups defined by compilation unit, function,
etc.

(b) Overlay& Linker support of program overlay may be needed for
target machines with limited memory. When an overlay requirement is
established, the linker can be extended to process commands which
define overlay regions and their contents.

(c) Relinking. The realities of target testing, validation, or release
control often require that locations of CSECTs change as little as
possible from link to link. To support this requirement, the linker
can be extended to process commands which refer to a previous link.
The map from the previous link is read and an attempt is made to place
CSECTs at the same location as in the previous link. If a CSECT
increases in size, the linker will place it in an unassigned location.
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CSECT size padding commands may be added so that initial links may
leave room for the growth of CSECTs and reduce the likelihood of
changed CSECT locations. This can reduce the cost of revalidation.

3.2.4 Auxilliary Program Library Functions

3.2.4.1 RECOMPILE

This program allows a user to request recompilation of one or more
units independently of the submission of source text to the compiler,
or the invocation of the LINK program. This may be desirable in the
following situations:

1. the entire program library (or a subset) is to be recompiled,
using a different compiler release or different compiler
options;

2. the units affected by a change in a referenced unit are to be
recompiled explicitly, rather than automatically at link time.

The RECOMPILE program creates a revision of a compilation unit, using
the same representation of the source as was submitted to the
compiler. The algorithms used for unit recompilation are described in
the source compiler and linker processing sections above. (The linker
actually invokes this program to perform its recompilations.)

The user invokes the RECOMPILE program with the following
parameters:

RECOMPILE UNITS=>unitspec LIB=>prog_lib [options] --> summary

The units to be recompiled are specified by a list of names, or ALL.
A subunit is specified by giving the library unit name and subunit
name, as in "uname.sname". The body of a library unit is specified
with "uname.body". The options that may be specified include all of
the compiler's options except VERSION and REORDER
(USE VERSIONS,LIST,DEBUGOPTIMIZE). An option specified via RECOMPILE
overides the corresponding option supplied with the source
compilation of the given version. Options specific to the RECOMPILE
program are:

BODY->(YES,NO)
-- YES means that a body corresponding to a
-- specification is automatically recompiled if the
-- specification has been recompiled since the last
-- compilation of the body

-- NO means that a body is not automatically recompiled
-- given recompilation of its specification
-- (it is recompiled if requested explicitly
-- via the UNITS parameter)
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FORCE->(YES,NO)
-- YES means recompile the specified units unconditonally
-- NO means recompile only if necessary to get consistent
-- usage of units

The linker invokes this program with the following options:

RECOMPILE UNITS=>main unit,
BODYf>YES,
FORCEf>NO,
LIBi>same as on link
USEVERSIONS=>same as on link

3.2.4.2 Body Generator

This program creates the source form for a null body corresponding
to a given specification. The specification may be for a library unit
or a subunit stub. The program locates the specification in the
program library. The processing which follows depends on the kind of
unit being generated.

In the case of a subprogram, the Diana form of the specification is
converted to source text form. If the subprogram is a subunit, the
specification is preceded by the appropriate SEPARATE statement. A
null body (BEGIN NULL; END;) is generated following the specification.
In the case of a function or a procedure with OUT parameters, the
value computed by the null body is undefined, as per [G-l, 6.5.]

In the case of a package, a package body skeleton is generated,
preceded by a SEPARATE statement if a subunit. The Diana for the
package specification is scanned for subprogram and package
specifications. For each subprogram specification found, a subprogram
body is generated as above. For each package, the routine that is
handling the package is recursively invoked. Following the
declarations of nested subprogram and package bodies, a null body for
the outer package is generated.

In the case of a task body, the null body is generated without

accept statements.

The body generator is invoked as follows:

BODYGEN UNITS->unitspec LIB->prog lib --> source text

The source text is written to standard output.

3.2.4.3 Preamble generator

The preamble generator is invoked by the linker or by the user
explicitly. This program creates the source for a preamble. The
preamble itself acts as a driver program for main programs which are
written as functions or procedures with parameters. The preamble
generator locates the specification of a main library unit subprogram
P in the program library. The identity of P is supplied by the
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invoker. A new procedure is generated in source form with the name
DRIVER P. The source of DRIVER P:

1. has a WITH P statement which names the original main unit, as
well as all of the units named in its WITH statements (so that
subprogram parameter types are visible to the preamble );

2. declares a local variable for each parameter;

3. calls the KAPSE to get the string value for the actual
parameters from the PARAMETERS attribute of the program context;

4. for each IN or INOUT parameter, uses the KAPSE function
PICK PARAM to locate either a named parameter-value pair, or the
correct positional argument;

5. if a value is found it is converted to the internal
representation for the type using the VALUE attribute of Ada;
the value is stored in the corresponding local variable;

6. if the value is not found, a default value is assigned to the
local variable; (the normal default mechanism of the compiler
cannot be used, since it is not known whether the user will
supply a value or not);

7. the main program P is called, passing the local variables as
arguments;

8. the inverse conversion is performed (using the IMAGE attribute
of Ada) for INOUT or OUT parameters or function value;

9. the KAPSE is called to record the results of the inverse
conversions in the PARAMETERS attribute of the program context.

For each value found in (3) above, if the value is ? or ":",
the preamble writes to standard output the type name expected, along
with the enumeration literals if the type is an enumeration, or a
range if the type is numeric. This gives a default help capability.
If any value is specified in this way, the main program P is not
called; instead, a message is written to standard output requesting
re-invocation of the program.

Automatic use of the preamble generator occurs if a link is
performed with a main unit that has parameters. The preamble
generator may also be used explicitly, with the user saving the
generated source, perhaps modifying it with more detailed help output.
Thus a standard user interface is insured for all user-written
programs. However, in case of special requirements the normal
conventions may be purposefully overridden by modifying the preambleA source.

The preamble generator writes the source for the preamble to

standard output. It is invoked as follows:

PREAMBLE UNIT->name LIB->prog lib --> source text
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3.2.4.4 Change Analyzer

This program takes two versions or revisions of a unit (U and U')
and compares the Diana trees. The Diana tree of U is walked in a
recursive algorithm which visits each construct. Two techniques for
comparision are used:

1. if the Diana construct in U is the defining occurrence of an
identifier, the same identifier is looked up by name in the
corresponding scope of U',

2. otherwise, a structural tree comparison is performed, stopping
at the first unequal comparision.

The output of the comparison is a VMM subdomain that contains a
mapping set. Each element of the set is a comparision node, with its
membership testing criterion being the VMM locator of the node in U.
The comparison node contains the VMM locator of the corresponding node
in U'. If the comparison node represents the defining occurrence of
an identifier, the comparison node records the result of the
comparison (equal, not equal, not found). Nodes compared as a result
of structural tree comparison are in the set only if they compared
equal. Nodes are considered equal if all semantic and storage
allocation "attributes" are equal.

After the mapping set is built, an inverse set is constructed with
the membership criterion being the VMM locator of the node in U1.
Then a structural walk of the Diana tree of U' is performed, checking
that each node representing a defining occurrence of an identifier is
in the inverse set. If not, a new member of the set is created
indicating that the corresponding node in U is not found. (Thus
adding a new identifier in U' is properly represented in the inverse
set.)

The VMM subdomain produced has the two mapping sets, a flag
indicating whether all comparisons succeeded, and a flag indicating
whether every pair of VMM locators in U and U' have identical
subdomain offsets. The last flag allows the MAP program to optimize
the mapping by instructing the VMM system to substitute only the
subdomain number part of a VMM locator.

The program )ptionally produces a human-readable output showing the
differences found by the comparison.

The mapping sets are used by the MAP program to determine which

units need recompilation.

3.2.4.5 MAP: The Domino Stopper

The MAP program gets its nickname from its ability to stop the
"domino effect" of unit recompilation, described in the special
requirements section of the compiler specification (3.2.2.4). The
user invokes this program with two versions or revisions of a
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compilation unit. By so doing, the user is asserting that the two are
identical, or at least similar enough so that some or all of the
referencing units do not need recompilation.

The change analyzer program is invoked to produce the mapping sets
between the two units, U and U'. Each unit in the library is
inspected to see if it refers to unit U. If it does, the global cross
reference set in the unit is inspected for individual references to
identifiers in unit U. For each identifier used, the mapping set
produced by the change analyzer program is checked to see if the
identifier is identical in U'. If all identifiers used in U' are
found to be identical U', the unit does not need recompilation. Note
that if U is a package and the referencing unit has a USES statement,
U and U' must be identical for all identifiers, not just the
referenced ones.

If any used identifiers are found to be changed or deleted in U',
the unit must be recompiled. It is recompiled immediately, to avoid
conflict with the mapping set to replace U.

After all referencing units have been checked, if any have not been
recompiledk the mapping sets built by the change analyzer are
processed to produce the VMM locator association set from U to U',
which is installed as a replacement for U. The VMM system will then
map any references to nodes in U with the identical nodes in U'.

The MAP program is invoked with as follows:

MAP FROM=>vmsdnum,TO=>vmsd-num,LIB=>prog_lib --> summary

Each vmsd num is the value of the VMSD attribute of the
versions/revisions which are asserted to be the same.

3.2.4.6 Object Module Converter

The Ada language makes provision for the incorporation of non-Ada
programs into the program library with the PRAGMA INTERFACE. The
object module converter program converts the output of a foreign
translator (compiler or assembler) into a compilation unit of the
program library. The output of the translator is in a particular
format called an object module. The object module format is as
expected by the linker for the non-APSE system. This is usually a
common format for all translators for a given machine-operating system
combination. This program installs the object module in the program
library by:

1. finding the corresponding Ada specification for the subprogram,
which was identified by PRAGMA INTERFACE;

2. creating a new PER=>UNIT object representing the body of the
specification;

3. defining the code generator attributes of the body by reading
the object module (usually a sequential operation) and
constructing CSECT, ENTRY, CSUD, LSUD, and link-time expression
nodes as required.
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The compiler supports PRAGMA INTERFACE only for subprograms which
would otherwise have separately compiled bodies. (Without this
restriction, the CONTENTS=>DIANA object produced by the compiler and
containing an INTERFACE subprogram would have to be modified by the
object module converter.) Thus, PRAGMA INTERFACE may be given only
for library unit subprograms or subprograms which satisfy the language
requirement for subunits. A certain level of support for a
translator's run time system is needed to allow its object module to
properly execute within the Ada run time system. Thus restrictions on
some foreign language features (such as I/O or supervisor-system
calls) may apply to a given combination of foreign translator, object
module converter, and host system.

3.2.4.7 Program Library Status Report Processor

This program produces a human readable listing which summarizes the
current state of a program library. For each version of a unit, the
listing reports:

1. the unit identity: name, version, part, kind, VMSD number;

2. when it was compiled;

3. the options it was compiled with;

4. which units it reterenced (by name, version, and VMSD number);

5. whether it requires recompilation;

6. which units depend on it (by name, version, and VMSD number).

The program has an option to invoke the link map lister (described
below) for each PER=>LINK object in the library. An option to delete
unused or out of date PER->UNIT and PER=>COMPILATION objects may also
be supplied.

3.2.4.8 Link Map Lister This program reads the map object produced by
the linker and creates a readable listing of its contents. The
listing shows:

1. each unit in the link (name, version, part, kind, VMSD number);

2. each control section (CSECT): its location and size;

3. each exception: its scope and unique number.

3.2.4.9 Source Extractor

This program extracts a text file from a program library for a
compilation unit. The compressed source representation in the
PER->COMPILATION object is expanded and written as source text lines
to standard output. Source text that was submitted with the
compilation unit representing other compilation units or the contents
of PRAGMA INCLUDE files is not written. The program is invoked as
follows:
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EXTRACT UNIT->name LIB=>prog_lib -->source text

3.2.4.10 Program Library Creator

This program is invoked by the compiler when the named program
library does not exist. It creates a program library composite object
by copying the standard system library, which contains the pre-defined
library units STANDARD, CALENDAR, SHARED VARIABLE-UPDATE,
UNCHECKED DEALLOCATION, UNCHECKED CONVERSION, INPUT-OUTPUT, TEXT 10,
and the KAPSE packages described Tn the KAPSE database specification
document [1-3].

I

..
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4.0 QUALITY ASSURANCE

Testing of Program Integration modules will proceed in three
stages:

1. Unit testing in the "bootstrap" environment, to verifyalgorithms used to implement the individual program modules.

2. Integration testing:

a) Access system testing with test driver modules. This will
test the program library access packages as a general purpose
capability.

b) Tool integration testing in the final host environment.

3. Acceptance testing using a set of user scenarios appropriate to
Ada Programming Support tool and Embedded Computer System
applications development.

41/42

INTERMETRICS INCORPORATED 7 XI CONCORD AVENUE * CAMBRIDGE. MASSACHUSE7r' 02138 (61?) am-Is"

• F



5.0 NOT APPLICABLE

4 3/44
INTIRMUTRICS INCORPORATED M 2 CONCORD AVENUE *CAMBRIDGE. MAS ACHUMM 0~236 (617) 901.10



II I. r,- j

6.0 NOTES

Ada supports separate compilations and separate compilations of
specifications and bodies, at that. A complete embedded computer
system (ECS) software product might involve hundreds of interdependent
compilation units and thousands of compilations and re-compilations.
It is imperative that these be conducted in an efficient manner. The
potential problem can be illustrated by considering the 26 compilation
units, A through Z, where initially the units are compiled as
follows:

A with B

B with C

C with D

Y with Z

In the general case, A through Y depend upon Z, A through X depend
upon Y, ... A through C depend upon D, etc. The indirect dependence
of A on C through Z must be assumed in the absence of detailed
analysis of each unit. (The MAP program performs this analysis.)

1. Suppose the logic of compilation were followed whereby
whenever a unit is compiled, all units dependent on it are
re-compiled. Thus, if the compiler were to receive (Z, M)
together in that order, Z would be compiled plus Y through A,
totaling 26 compilations. Then M would be re-compiled (it
just was compiled) plus L through A, again, adding another 13
compilations, totaling 39. Note that if Z were to be
compiled again, perhaps to add a statement or make another
modification, another 26 re-compiles would occur even though
the program had never been linked for execution.

2. Suppose a different approach were followed, one which
compiled just the units presented, followed by all necessary
re-compilations at the end to ensure a consistent set. Thus
with (Z, M), Z is compiled, M is compiled using the old N
through Z, and then Y through A are recompiled. This is a
total of 27 compilations, a significant improvement.

3. Both of the above methods, however, suffer from burden of
preparing a consistent set of units without any knowledge of
whether this set will be used; i.e., linked or otherwise
examined within the program library. The current design
compromises here in favor of the contention that delaying
consistency until consistency is really required is the most
efficient course. The approach (subject to user over-ride)
is a follows: partially compile all presented units (i.e.,
through lexical and syntactical phases) and complete the

Icompilation simply; for (Z, M) this means compile Z and then
notice that M depends on ZI i.e., the new Z, so recompile Y
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through N with the new Z and then compile M. This totals 14
compilations. Of course A through L still refers to old
units and are thus inconsistent but this will be reconciled
when the program is used (linked). In the mean time, Z and M
could be compiled again causing another 14 recompiles instead
of 27 or 39 for the rejected approaches.

To reduce recompiles even further, the user can assert that a new
Z doesn't affect the other units (because only a comment was changed,
for example). The MAP tool checks the assertion and, if true, no
further recompilations will occur because of the new Z.

Summary MAPSE
Design

(1) (2) (3)

Recompiles 39 27 14
at Compile
Time

Recompiles 0 0 12
at Link Time

The recompile strategy of the design will significantly reduce the I
potential for extraneous compilations during program development. One
other point here about the desgin. With hundreds of compilation
unit's the correct order of compilations can become near impossible
for the user to sort our manually. The current MAPSE design provides
an automatic assist in this task by providing an ordering capability
in the compiler. After partial compilation, the tool examines the
units and properly orders them for continued compilation. Thus, in
effect, the user can submit compilation units in any order, and be
assured of a correct compilation, if the source contains no errors.
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